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HEAT-AND MASS-TRANSFER CHARACTERISTICS

IN A SPATIAL SUBSONIC FLOW AROUND A BLUNT BODY

UDC 533.526 + 536.24V. I. Zinchenko, K. N. Efimov,

A. G. Kataev, and A. S. Yakimov

A study was performed of methods for controlling thermal regimes in a spatial supersonic flow around
a blunt body with the simultaneous use of gas injection from the surface of the porous bluntness and
heat flow in the shell material. The effect of the nonisothermicity of the shell wall on the heat- and
mass-transfer characteristics in the boundary layer was taken into account by solution of the problem
in a conjugate formulation. It is shown that heat conducting materials can be used to advantage to
reduce the maximum temperatures in the screen zone.

In the design of high-speed flight vehicles, one of the most complicated problems is the thermal protection
of structures. More and more stringent requirements on the accuracy in determining the heat- and mass-transfer
characteristics of the shell of a streamline body has led to the necessity of solving the problem in a conjugate
formulation [1–3].

With increase in thermal loads, structural materials frequently operate at the limit of their possibilities.
Therefore, it is of interest to study highly heat-conducting materials, which ensure a decrease in surface tempera-
ture Tw. An alternative solution of the problem is apparently the development of combined thermal protection [3, 4].

In the present paper, we solve the problem of heating of the shell of a spherically blunted cone in a supersonic
airflow at various angles of attack with a laminar boundary-layer flow. In this case, to decrease the maximum surface
temperature, we used highly heat-conducting materials for the shell of the streamline apparatus and gas injection
from the surface of the porous spherical bluntness.

1. Formulation of the Problem. For the perfect gas model, the system of equations of a spatial boundary
layer in a natural coordinate system attached to the outer surface has the form
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p = ρRT/m, p = pe(s, η).

For the porous spherical shell (0 < s < s1) with one-dimensional filtration of the gas injected normally to
the surface in the examined coordinate system attached to the body symmetry axis, we have [4]
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0 < n1 < L, 0 < η < π, H1 = (RN − n1)/RN , r1 = (RN − n1) sin s̄, s̄ = s/RN .

For the conical part of the body (s1 < s < sk), the heat-conduction equation is
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r2 = (RN − n1) cos θ + (s− s1) sin θ.

The boundary and initial conditions are written as follows. On the outer surface of the boundary layer
(n→∞), we have

u→ ue(s, η), w → we(s, η), T → Te(s, η), (4)

where ue, we, Te, and Pe are determined from the solution of the Euler equations by the method of [5].
On the surface of the streamline body, we have

u(s, η) = w(s, η) = 0, (ρv) = (ρv)w(s, η) = const (0 < s < s1),
(5)

(ρv) = 0 (s1 6 s 6 sk).
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On the inner surface of the hemisphere and the conical part, the following relations hold [4]:

λ1(1− ϕ)
∂T1

∂n1

∣∣∣
n1=L

= −r1wcp,g(ρv)w
(r1H1)n1=L

(T1L − Tin), 0 < s < s1,

(7)

λ1
∂T2

∂n1

∣∣∣
n1=L

= 0, s1 6 s 6 sk.

On the conjugation ring “sphere–cone” (s = s1), ideal contact conditions are used, and at s = sk, the
adiabatic condition is used:
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The initial conditions are
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In Eqs. (1)–(10), u, v, and w are the mass-average velocity components in the natural coordinates (s, n, η), p, ρ,
and T are the pressure, density, and temperature, respectively, t is time, (ρv)w is the flow rate of the coolant gas, cp,
λ, and µ are the heat capacity, thermal conductivity, and toughness, respectively, m is the molecular weight, R is
the universal gas constant, rw, r1, and H1 are the Lamé factors, ϕ is the porosity, RN is the radius of the spherical
bluntness, σ is the Stefan–Boltzmann constant, εi (i = 1, 2) are the emissivities of the shell surface, the normal to
the surface n1 is directed into the depth of the shell, L is the thickness of the shell, and θ is the cone angle; the
subscripts e and w correspond to the quantities on the outer surface of the boundary layer and on the surface of the
streamline body, respectively, the subscripts 1 and 2 correspond to the condensed phase of the spherical and conical
parts of the body, respectively, and the subscripts g, in, and k refer to the gas phase of the porous spherical shell,
the initial conditions, and the peripheral region of the shell, respectively; the bar denotes dimensionless quantities.
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Fig. 1 Fig. 2

In (1), the conservation equations are written under the assumption of unchanged composition, which is
valid if the composition of the injected gas coincides with the composition of the free-stream flow (air in ours case).

The boundary-value problem (1)–(10) was solved numerically by an iterative-interpolation method [6].
Equations (1) were solved in the Dorodnitsyn–Lees variables for a laminar boundary-layer flow. The three-

dimensional unsteady equations (2) and (3) were solved using a locally one-dimensional splitting scheme [7]. The
geometry of the model, the pressure at the stagnation point, and the flow rate and law of consumption of the gas
injected from the bluntness surface are taken from [8]: the free-stream Mach number M∞ = 5, RN = 0.0508 m,
the stagnation pressure pe0 = 3.125 · 105 N/m2, (ρv)w(s̄, η) = const, Tin = 288 K, Te0 = 1500 K, the stagnation
enthalpy he0 = 1.536 ·106 J/kg, ε1 = ε2 = 0.85, L = 2.2 ·10−3 m, θ = 5◦, the angle of attack β = 10◦, and ϕ = 0.34.

As the material of the shell, we considered asbestos cement [λi = 0.349 W/(m ·K), cpi = 837 J/(kg ·K),
ρi = 1800 kg/m3, i = 1, 2] and copper [λi = 386 W/(m ·K), cpi = 370 J/(kg ·K), ρi = 8950 kg/m3, i = 1, 2] [9].

2. Analysis of the Numerical Solution. Figure 1 gives the convective heat flux from the gas phase q0
w

and the surface temperature Tw versus the coordinate s̄ on the windward and leeward sides of the symmetry plane
at (ρv)w = 0. The solid curves correspond to an angle of attack β = 10◦, and the dashed curve correspond to β = 0.
Figure 1a corresponds to the time t = 0. In Fig. 1b, curves 1 and 2 are obtained for a shell made of asbestos cement,
curves 3 and 4 correspond to a copper shell, and curves 5 and 6 correspond to the condition λi →∞ (i = 1 and 2).
The temperature distributions over the shell surface are calculated for steady-state (t → ∞) heating of the body,
and the calculations of the heating of a copper shell ignoring heat flow along the circumferential coordinate η are
shown by crosses.

From Fig. 1 it follows that the region of maximum temperature of the impermeable shell surface coincides
with the region of maximum thermal flux for a laminar boundary-layer in the vicinity of the stagnation point. In
this case, a change of the angle of attack causes a shift of the maxima relative to the center of symmetry of the
streamline body.

For the non-heat-conducting material of the shell, the surface temperature is equal to the equilibrium radi-
ation temperature Twp because for asbestos cement, the heating process is one-dimensional. The temperature Twp
determined from the condition of conservation of energy on the porous and conical surfaces [4]

qw + cp,g(ρv)w(Tin − Twp) = ε1σT
4
wp, qw = ε2σT

4
wp,
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is maximum attainable surface temperature in the absence of heat flow in the longitudinal and circumferential
directions. For the highly heat-conducting material of the shell, the maximum surface temperature decreases
appreciably. At the same time, the heat flow along the longitudinal and circumferential coordinates increases the
surface temperature of the conical part (especially on the leeward side) compared to Twp. Neglect of heat flow in
the circumferential direction for a spatial flow around the body leads to an increase of Tw on the windward side
and a decrease of it on the leeward side. As λi →∞ (i = 1, 2) there is a considerable decrease in the temperature
of the spherical part of the body and equalization of the temperature profile in the streamline material, and values
of the surface temperature agree with the calculations of [4].

We consider the effect of the coolant gas flow from the surface bluntness. Figure 2 gives distributions of the
heat flux qw at t = 0 and the stationary surface temperature Tw for flow at incidence. The solid and dashed curves are
obtained for values (ρv)w = 1.626 and 0.813 kg/(m2 · sec), respectively. Injection of a coolant gas from the porous
bluntness decreases considerably the heat flux on the spherical part. In this case, for (ρv)w = 0.813 kg/(m2 · sec)
there is a linear dependence qw(ρv)w, which agrees well with the formula of [10] qw/q0

w = 1 − k(ρv)w/(α/cp)0,
where k = 0.57–0.61. Furthermore, at (ρv)w = 1.626 kg/(m2 · sec), the dependence of the ratio of the heat flux
at the critical point to the corresponding value of q0

w in the absence of injection qw/q
0
w on the injection parameter

(ρv)w/(α/cp)0 is close to that obtained experimentally by Feldhuhn [8], who studied the effect of intense injections
on heat flows to a porous spherical surface.

As follows from Fig. 2b, for injection of a coolant gas, the dependence Tw(s̄) differs qualitatively from the
distribution of Tw(s̄, η) at (ρv)w = 0 for various values of λi. In Fig. 2b, curves 1 correspond to the shell from asbestos
cement with values of Tw coincident with the value of the radiation temperature of the surface Twp, curves 2 are
obtained for the copper shell, and curves 3 correspond to the limiting case λi →∞. For (ρv)w = 0.813 kg/(m2· sec)
with increase in λi, the values of Tw on the windward side of the conical part of the body decrease in comparison
with Twp because of heat sink into the porous bluntness, and on the leeward side, heat flow results in the surface
temperature becoming much higher than the equilibrium radiation temperature. With increase in the flow rate of
the coolant gas, the nature of the dependences Tw(s̄) and Twp(s̄) on the conical part of the body does not change.
On the porous part of the shell, an increase in the injection parameter and thermal conductivity of the material
leads to intense heat sink from the conical surface and a decrease and subsequent equalization of the temperature
of the spherical bluntness.

In the case of λi → ∞ (curve 3 in Fig. 2b) for (ρv)w 6= 0, the surface temperature is less than half that in
the case (ρv)w = 0 (see Fig. 1). This result confirms that it is reasonable to use highly heat-conducting materials
to ensure intense heat sink to the region of the permeable bluntness.

It is of interest to study the distribution of Tw(s̄, η) in the steady-state regime for various flow rates of the
coolant gas and materials with various thermal properties. Figure 3 shows distributions of the heat flux and surface
temperature along the longitudinal coordinate for the copper shell. As in Figs. 1 and 2, the values of qw correspond
to the time t = 0, and Tw corresponds to steady-state heating of the body. The dot-and-dashed, dashed, and solid
curves correspond to 0, (ρv)w = 1.626, and 0.813 kg/(m2 · sec), respectively, and curves 1, 2, and 3 correspond to
the surface temperature at η = 0, π/2, and π, respectively. Figure 4 shows the steady-state temperature field for
the material with low heat-conductivity (asbestos cement) (the notation is the same as in Fig. 3).

As one might expect, the maximum surface temperature is reached on the windward side of the shell and
corresponds to the maximum convective heat flux from the gas phase for η = 0 both with and without injection of a
coolant gas. An analysis of Figs. 3 and 4 shows that with constant injection of the coolant gas along the generatrix,
the value of Twp at the stagnation point on the spherical part of the body exceeds the corresponding value Tw for
the copper shell. At the same time, in the vicinity of the “sphere–cone” conjugation (s̄ = s̄1), heat flow results in
the temperature Tw becoming much higher than the surface temperature of the non-heat-conducting shell.

The crosses in Figs. 3 and 4 correspond to calculations in a simplified formulation for the convective heat-
transfer coefficient taken from [11] and for η = π/2 and (ρv)w = 0. It should be noted that in the absence of
injection of a coolant gas, the results of solution of the problem in the separate and conjugate formulations agree
fairly well.

Besides the solution of the problem in the conjugate formulation, we studied the question of whether the use
the separate formulation is reasonable in the case of specified convective heat-transfer coefficient for the isothermal
(at the initial time) surface of the body. Figure 5 shows the dependence Tw(s̄) in the flow symmetry plane for

117



Fig. 3

Fig. 4 Fig. 5

steady-state flow around a copper shell (β = 10◦). The solid curves correspond to the solution in the conjugate
formulation, and the dashed curves correspond to the separate formulation. Curves 1–3 were obtained for (ρv)w = 0,
0.813, and 1.626 kg/(m2 · sec), respectively, and the crosses are results of calculation in the separate formulation
for the heat-transfer coefficient taken from [11], in the flow symmetry plane for (ρv)w = 0. From Fig. 5 it follows
that the separate formulation can be used to calculate the temperature field of the shell without injection from the
surface using the value of the heat-transfer coefficient for an isothermal (at the initial time) surface or the value
determined from the formulas of [11]. In the case of injection in the screen zone, the approximate approach using
the coefficient of heat transfer to an isothermal surface results in a considerable increase in surface temperature
compared to the exact solution of the heating problem in the conjugate formulation. This is due to the complex
character of heat transfer in the case of a nonisothermal surface. Under these conditions, as is shown in [1], the
expression for the heat-transfer coefficient includes the term (∂Tw/∂s̄)/(Te0−Tw), whose effect becomes significant
in the thermal screen zone, where considerable temperature gradients ∂Tw/∂s̄ occur.
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